八年级数学教学反思

时间:2024-07-14 11:42:08
八年级数学教学反思15篇

八年级数学教学反思15篇

作为一名优秀的人民教师,我们都希望有一流的课堂教学能力,借助教学反思我们可以拓展自己的教学方式,教学反思要怎么写呢?以下是小编精心整理的八年级数学教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

八年级数学教学反思1

通过例题由我先作一示范,学生练习格式,接着出现有增根的练习题,依然让学生解决,由于学生不会检验培根的情况,所以,些时再详究增根产生的原因,怎样检验增根等问题。

这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的.空间还是说让学生在老师的引导下去完成,我们先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定采用第二套方案。

在本课的教学过程中,我认为应从这样的几个方面入手:

1、分式方程和整式方程的区别;

2、分式方程和整式方程的联系;

3、解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母;

4、对分式方程可能产生增根的原因,要启发学生认真思考和讨论。

课堂效果:在这节课上,11班学生状态非常好,所有的学生都能积极思考,踊跃回答问题,感觉这节课的效果还是不错的。

八年级数学教学反思2

《勾股定理》一章检测结果出来了,学生考绩很不理想,很多不该错的题做错了。是什么原因致使错误频出呢?我辗转反侧。

一是没有把握好勾股定理的适用范围。勾股定理只适用直角三角形,而不适用钝角三角形和锐角三角形。例如:在△ABC中,AC=3,BC=4,有的同学直接根据勾股定理得:AB=5。这是因为与勾股定理的条件相似,已知三角形的两边,求第三边,满足能利用勾股定理解决问题的特征之一,却忽略特征之二:勾股定理只适用直角三角形。

二是没有弄清楚待求的直角三角形的第三边是斜边还是直角边。例如:已知直角三角形两直角边的长分别是4c和5c,求第三边的长。很多同学可能是受勾股数“3,4,5”的影响,错把结果写成了3c,其实这里的第三边是斜边.

三是缺乏分类思想,考虑问题不全面,导致解答错误。例如:已知直角三角形两边长分别是1、4,求第三边的长。这里的第三边有可能是斜边也有可能是直角边,所以结果应该有两个,但好多同学都填了一个答案。又如:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的面积。此题应考虑三角形是锐角三角形,还是钝角三角形两种情况,否则会漏解。

四是利用直角三角形的判别条件时,没有分清较短边和较长边。例如:已知三角形的三边长分别为a=0.6,b=1,c=0.8,问这个三角形是直角三角形吗?有的同学认为此三角形不是直角三角形,其实这个三角形是以b为斜边的直角三角形。

五是缺少方程思想和转化思想,使综合类试题痛失分数。

六是书写不规范。例如:运用直角三角形的判别条件,判别一个三角形是否为直角三角形的过程中,有的同学写出一句“由勾股定理得”的不恰当的叙述。

针对上述问题,痛定思痛,感悟颇多:

第一,教学不可削弱技能的训练。要学生真正掌握某个知识,如果缺少相应技能的训练是不科学的。正如教人开车的教练把开车的要点、技巧讲清楚,然后叫学车的学生马上开车去考试一样。试问:当教师在讲台上滔滔不绝地讲解时,能否保证每一个学生都专心去听?能否保证每一个专心去听的学生都听得明白?能否保证每一个听得明白的学生都能解同一类题目?可见:“课堂上教师讲,学生听,听就会懂,懂就会做。”只是教师一厢情愿的做法,教师只有不满足于自己的“讲清楚”,在课堂上帮助学生独立完成,并进行一定量的训练,才能实现教学的有效性。

第二,巧设错误案例,让学生辨错、纠错,即学生对教师的有意“示错”进行分析、判断,提高防错能力。在教学中,教师有时可恰到好处,有意地把估计学生易错的做法显示给学生,以引起学生的注意,然后通过师生共同分析错因,加以纠错,达到及时、有效预防,并避免学生出现类似错误的目的。这样,可防患于未然,并提高学生分析、判断、解决问题的'能力。

第三,教学应注重数学思想和方法传授。理解掌握各种数学思想和方法是形成数学技能技巧,提高数学能力的前提。 学生学习数学,学会是基础,会学是目的,教是为了不教。教学中,在加强技能训练的同时,要强化数学思想和数学方法的教学,做到讲方法联系思想,以思想指导方法,使二者相互交融,相得益彰。此外,在教学中培养学生的“问题意识”,激励学生善于发现问题、思考问题,并能运用数学方法去解决广泛的多种多样的实际问题,以便增强学生探究新知识、新方法的创造能力。

第四,教学应加大综合训练的力度。目前的综合题已经由单纯的知识叠加型转化为知识、方法和能力综合型尤其是创新能力型试题,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及创新意识等特点。教学时应抓好“三转”能力的培养:(1)语言转换能力。每道数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成,解综合题往往需要较强的语言转换能力,能把普通语言转换成数学语言。(2)概念转换能力:综合题的转译常常需要较强的数学概念的转换能力。(3)数形转换能力。解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数与几何的结合上找出解题思路。只有如此,方可找到解决综合题的突破口。

第五,教学勿忘发挥板书的特有功能。板书通过学生的视角器官传递信息,比语言富有直观性。条例清晰,层次分明,逻辑严谨的解答过程的板演,不但便于学生理解、掌握知识,还会给学生起到示范作用。

相信通过反思教学,优化方法,细化过程,一定能取得事半功倍之效。

八年级数学教学反思3

1、根据新课程概念:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”。本节课的设计遵循了这一理念,注意通过折纸等丰富多彩的活动激发学生学习本课的积极性,注意让学生动手操作实践,在操作中进行自主探索和师生、生生互动交流,从而使学生能很好地掌握角平分线的性质。并获得用折纸这样的操作发现法探究图形性质的活动经验。

2、在本节课的教材内容处理上,既注意了教材是最基本的课程资源,它是满足所有七年级学生最基本的知识内容,又注意了我校学生的实际情况。因此,本节课突出了课程资源的开发,即对原有例题作了补充(如例2),又增加了反馈练习活动,让学生在议练活动中学会运用角平平分线性质解决问题,同时还进行了思维拓展,这样充分体现了让不同的学生“在数学上得到不同的发展”基本理念。

3、本节课在教法上采用了 ……此处隐藏10305个字……解题技巧,把学生的认知提升了一个高的层面上,达到了用法则而不拘泥于法则,通过分析题目的显著特点,来灵活运用方法技巧解决问题。同时把时间和空间留给学生,让他们多一些练习,多一些巩固。

3、是体会到一节课的科学设计不仅对一节课的成败取着决定作用,更重要的是对学生数学思想的建立和数学方法的掌握欲为重要,科学的设计,有利于充分的挖掘学生的数学潜能,突破难点,事半而功倍,有利于数学学习的深化。

不足:

(1)学生对于同分母的分式的加减运算掌握得比较好,但是对于异分母的.分式加减就掌握得不是很理想,很多学生对于分式的通分还很不熟练,也有学生对于计算结果应该为最简分式理解不够总是无法化到最简的形式。

(2)分式的加减法上完后列举了一道加减混合运算题,在讲解时结合加减混合运算法则进行复习,分式的加减混合运算不同的是分母或者分子当中如果有出现可以因式分解的应该先进行因式分解,异分母的分式应先进行通分化为同分母再进行计算,在计算时应先观察分式的特点,达到化繁为简的目的。

八年级数学教学反思13

今年接手八年级,没教之前,就听多少老师谈过,七年级的数学平均分在20多分,可上了八年级平均分还要糟,当时我还不怎么相信,因为我看过课程不是很难,所以相信我的学生一定能学好。

刚上第一章时是孩子们最头疼的几何题,我仔细阅览课本之后,把第一章的知识点系统起来,缩减到三个图形当中,第一个图形,首先是线段的垂直平分线,学生需要掌握的是:先是会画图形,这个我让学生做过不少练习,在各种不同的图形当中,其后,我让学生分析自己画的图形有什么性质,也就是线段垂直平分线上的点到线段两端点的距离相等,最后,我鼓励学生自己出题,那就是你觉得针对这个知识点你觉得应该怎样出题,才让别人难住,或者让老师难住?学生的学习兴趣立即被调动起来,这也是我期望得到的,第二个图形,是角的平分线,大体思路和第一个图形一样学习,第三个图形是关于对称的,点、线、面、体的对称,我发现学生对于这三个知识点学的.不错,另外镜面对称那一节学生学习效果特别号,包括平时不怎么学习的孩子,原因在于,这一节我设计成实验课,让学习自己动手做实验,然后得出镜面对称的规律,然后依照他们自己得出的规律做题,孩子们对于这样的课意犹未尽,我想,在以后的教学过程当中,如果条件允许,尽量多设计几堂这样的课程,还有一点,就是学生几何题的步骤不会写,可能自己心里明白,但是就是不知道怎么写,由于是重新编排的班级,学生掌握的残次不齐的,针对这个问题,我还是训练学生首先会说,也就是把他们想的说出来,这一步很关键,很多学生不好意思说,怎么办呢我先从好学生下手,让他们上课积极回答问题,带动班级的积极性,效果还不错,课堂上课堂气氛活跃了,证明很多孩子都在听讲,成绩就越好,我鼓励他们,犯了错不要紧,关键是改。

八年级数学教学反思14

在教学实践中我觉得要提高教学效果,达到教学目的,必须在引导学生参与教学活动的全过程上做好文章:加强学生的参与意识;增加学生的参与机会;提高学生的参与质量;培养学生的参与能力。

一、重视学习动机在教学过程中的激励作用,通过激发学生的参与热情,逐步强化学生的参与意识从教育心理学的角度来说,教师应操纵或控制教学过程中影响学生学习的各有关变量。在许许多多的变量中,学习动机是对学生的学习起着关键作用的一个,它是有意义学习活动的催化剂,是具有情感性的因素。只有具备良好的学习动机,学生才能对学习积极准备,集中精力,认真思考,主动地探索未知的领域。在实际教学中,向学生介绍富有教育意义的数学发展史、数学家故事、趣味数学等,通过兴趣的诱导、激发、升华使学生形成学好数学的动机。

教学中,激发学生参与热情的方法很多。用贴近学生生活的实例引入新知,既能化难为易,又使学生倍感亲切;提出问题,设置悬念,能激励学生积极投入探求新知识的活动;对学生的学习效果及时肯定;组织竞赛;设置愉快情景等,使学生充分展示自己的才华,不断体验解决问题的`愉悦。坚持这佯做,可以逐步强化学生的参与热情。

二、重视实践活动在教学过程中的启智功能,通过观察、思考、讨论等形式诱导学生参与知识形成发展的全过程,尽可能增加学生的参与机会。在数学教学中,促使学生多种感官并用,让学生积累丰富的典型的感性材料,建立清晰的表象,才能更好地进行比较、分析、概括等一系列思维活动,进而真正参与到知识形成和发展的全过程中来。

1。通过讨论,学生间可充分发表自己的见解,达到交流进而共同提高的效果。

此外,教学中让学生多练习、多提问、多板演等都可增加学生参与的机会。

三、重视学习环境在教学过程中的作用,通过创设良好的人场关系和学习氛围激励学生学习潜能的释放,努力提高学生的参与质量和谐的师生关系便于发挥学生学习的主动性、积极性。

总之,在数学课堂教学中,教师要时时刻刻注意给学生提供参与的机会,体现学生的主体地位,充分发挥学生的主观能动作用。只有这样才能收到良好的教学效果,在反思过程中提高学生能力。

让学生多观察

数学虽不同于一些实验性较强的学科,能让学生直接观察实验情况,得出结论,但数学概念的概括抽象,数学公式的发现推导,数学题目的解答论证,都可以让学生多观察。

2。让学生多思考

课堂教学中概念的提出与抽象,公式的提出与概括,题目解答的思路与方法的寻找,问题的辨析,知识的联系与结构,都需要学生多思考。

3。让学生多讨论

课堂教学中,教师的质疑、讨论、设问可讨论,问题怎样解决可讨论。

八年级数学教学反思15

下面是我在教学中的几点体会:

一、教学中的发现

(1)分式的运算错的较多。分式加减法主要是当分子是多次式时,如果不把分子这个整体用括号括上,容易出现符号和结果的错误。所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。其次,分式概念运算应按照先乘方、再乘除,最后进行加减运算的顺序进行计算,有括号先做括号里面的。

(2)分式方程也是错误重灾区。一是增根定义模糊,对此,我对增根的概念进行深入浅出的阐述:

1.增根是分式方程的去分母后化成的整式方程的根,但不是原方程的.根;

2.增根能使最简公分母等于0;二是解分式方程的步骤不规范,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的模式中跳出来;

(3)列分式方程错误百出。

针对上述问题,我在课堂复习中从基础知识和题型入手,用类比的方法讲解,特别强调列分式方程解应用题与列整式方程一样,先分析题意,准确找出应用题中数量问题的相等关系,恰当地设出未知数,列出方程;不同之处是,所列方程是分式方程,最后进行检验,既要检验是否为所列分式方程的解,又要检验是否符合题意。

二、教学后的反思

通过这节课的教学及课后几位专家的点评,这节课的教学目的基本达到,不足之处本节课的容量较大,如果能采用多媒体教学效果会更好;在以后的教学中我将继续努力,提高自己的教学水平。

《八年级数学教学反思15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式